Natchem Duefte essential oils wholesale price list


Indole compounds and their biochemistry have been attracting increasing attention in recent years. Application of new techniques has not only detected many more indoles in nature, but more importantly, the hormonal nature of some of these compounds has been widely established in both plants and animals. On these grounds alone, it is timely to consider the present status of higher plant indoles and their biochemistry.


Indoleacetic Acid Indole Alkaloid Indole Derivative Plant Growth Substance Indole Compound
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The preparation of this article was initiated during the author’s tenure of a Lalor Fellowship. It was also assisted by grants to Professor K. V. Thimann by the National Science Foundation and the American Cancer Society. The author is indebted to Professor Thimann for his interest, many suggestions, and criticism of the manuscript and acknowledges helpful suggestions by Drs. W. A. ​​Andreae and J. B. Greenberg.

This is a preview of subscription content, log in to check access.


Unable to display preview. Download preview PDF.


  1. Anderson, J.A., M.R. Ziegler, and D. Doeden: Banana Feeding and Urinary Excretion of 5-Hydroxyindoleacetic Acid. Science (Washington) 127, 236 (1958). Google Scholar
  2. Andreae, W.A. and N. E. Good: The Formation of Indoleacetylaspartic Acid in Pea Seedlings. Plant Physiol. 30, 380 (1955). Google Scholar
  3. Studies on 3-Indoleacetic Acid Metabolism. IV. Conjugation with Aspartic Acid and Ammonia as Processes in the Metabolism of Carboxylic Acids. Plant Physiol. 32, 566 (1957). Google Scholar
  4. Andreae, W. A. ​​and M. W. H. Van Ysselstein: Studies on 3-Indoleacetic Acid Metabolism. III. The Uptake of 3-Indoleacetic Acid by Pea Epicotyls and its Conversion to 3-Indoleacetylaspartic Acid. Plant Physiol. 31, 235 (1956). Google Scholar
  5. Arai, I .: Growth Factor for Salmonella typhosa. V. Mechanism of Growth Promoting Action of Tryptophan. (2). Additional Observations on the Inhibition of Growth of Salmonella typhosa by Several Indole Derivatives. J. pharmac. Soc. Japan 71, 673 (1951) [Chem. Abstr. 45, 10301 (1951)]. Google Scholar
  6. Armstrong, M.D., K.N.F. Shaw, M.J. Gortakowski, and H. Singer: The Indole Acids of Human Urine. Paper Chromatography of Indole Acids. J. Biol. Chem. 232, 17 (1958). Google Scholar
  7. Aronoff, S .: Experiments on the Biogenesis of the Pyridine Ring in Higher Plants. Plant Physiol. 31, 355 (1956). Google Scholar
  8. Ashby, W. C .: Effects of Certain Acid Growth-regulating Substances and Their Corresponding Aldehydes on the Growth of Roots. Bot. Gaz. 112, 237 (1951) Google Scholar
  9. Avery, G.S., Jr. and J. Berger: Tryptophan and Phytohormone Precursors. Science (Washington) 98, 513 (1943). Google Scholar
  10. Avery G.S., Jr., J. Berger and B. Shalucha: Auxin Storage as Related to Endosperm Type in Maize. Bot, Gaz. 103, 806 (1942). Google Scholar
  11. Baccarini, P .: Sopra la presenza di indolo nei fiori di alcune piante. Bull, soc. offered. Ital. 1910, 96th Google Scholar
  12. Sulla presenza di indolo negli organi vegetativi di alcune piante. Bull, soc. offered. Ital. 1911, 105th Google Scholar
  13. Baker, J. W .: Syntheses in the Indole Series. Part I. Synthesis of Indolyl-3-glyoxylic Acid and of r-3-Indolylglycine. J. Chem. Soc. (London) 1940, 458. Google Scholar
  14. Ballantine, J.A., C.B. Barrett, R.J.S. Beer, S. Eardley, A. Robertson, B.L. Shaw and T.H. Simpson: The Chemistry of Bacteria. Part VII. The Structure of Violacein. J. Chem. Soc. (London) 1958, 755. Google Scholar
  15. Barratt, R. W. and W. Ogata: A Strain of Neurospora with an Alternative Requirement for Leucine or Aromatic Amino Acids. Amer. J. Bot. 41, 763 (1954). Google Scholar
  16. Beijerinck, M. W .: On the Formation of Indigo from the Woad (Isatistinctofia). Con. Ned. Akad. Wetensch. Proc. 2, 120 (1900). Google Scholar
  17. Beijerinck, M. W .: On Indigo fermentation. Con. Ned. Akad. Wetensch. Proc. 2, 495 (1900). Google Scholar
  18. Beijerinck, M. W .: Further Researches on the Formation of Indigo from the Woad (Isatistinctofia). Con. Ned. Akad. Wetensch. Proc. 3, 101 (1901). Google Scholar
  19. Bentley, J. A .: The Naturally-Occurring Auxins and Inhibitors. Annu. Rev. Plant Physiol. 9, 47 (1958). Google Scholar
  20. Role of Plant Hormones in Algal MetaboUsm and Ecology. Nature (London) 181, 1499 (1958). Google Scholar
  21. Bentley, J.A. and A. S. Bickle: Studies on Plant Growth Hormones. II. Further Biological Properties of 3-Indolylacetonitrile. J. exp. Bot. 3, 406 (1952). Google Scholar
  22. Bentley, J.A., K.R. Farrar, S. Housley, G.F. Smith and W.C. Taylor: Some Chemical and Physiological Properties of 3-Indolylpyruvic Acid. Biochemic. J. 64, 44 (1956). Google Scholar
  23. Bentley, J.A. and S. Housley: Studies on Plant Growth Hormones. I. Biological Activities of 3-Indolylacetaldehyde and 3-Indolylacetonitrile. J. exp. Bot. 3, 393 (1952). Google Scholar
  24. Bentley, K. W .: Alkaloids of the Indole Group I and II. In: The Chemistry of Natural Products. The alkaloid. Vol. I, p. 146. New York: Interscience Pubi. 1957. Google Scholar
  25. Berg, C.P., W.C. Rose, and C.S. Marvel: Tryptophane and Growth. III. 3-Indolepropionic Acid and 3-Indolepyruvic Acid as Supplementing Agents in Diets Deficient in Tryptophan. J. Biol. Chem. 85, 219 (1929/30). Google Scholar
  26. Berger, J. and G. S. Avery, Jr .: Isolation of an Auxin Precursor and an Auxin from Maize. Amer. J. Bot. 31, 199 (1944). Google Scholar
  27. Berger, J. and G. S. Avery, Jr .: Chemical and Physiological Properties of Maize Auxin Precursor. Amer. J. Bot. 31, 203 (1944). Google Scholar
  28. Bergtheil, C .: The Fermentation of the Indigo-plant. Chem. Soc. (London) 85, 870 (1904). Google Scholar
  29. Berthelot, a .: Recherches sur le Proteus vulgaris. Ill B. Etude de la fonction indologène. Ann. Inst. Pasteur 28, 849 (1914). Google Scholar
  30. Bitancourt, loc. a .: Research physiologiques sur les auxines. Rev. gén. bot. 62, 498 (1955). Google Scholar
  31. Bitancourt, A. A., K. Schwarz e A. P. Noguera: A DecomposÍ9ao Espontánea de Alguns Derivados Indólicos. I. Métodos Experimentáis. Arqu. Inst. Biol. (Sao Paulo) 24 (13), 169 (1957). Google Scholar
  32. Block, R. J. and K. W. Weiss: Amino Acid Handbook, Part II, p. 296. Springfield, Illinois: Thomas Pubi. 1956. Google Scholar
  33. Blommaert, K. L. J .: Growth and Inhibiting Substances in Relation to the Rest Period of the Potato Tuber. Nature (London) 174, 970 (1954). Google Scholar
  34. Bonde, E. K .: Auxins and Auxin Precursors in Acid and Nonacidic Fractions of Plant Extracts. Bot. Gaz. 115, i (1953). Google Scholar
  35. Boorsma, W. G .: About aloe wood and other smelling woods. Bull. Dépt. Agrie. Indes Néerlandaises (Buitenzorg) 7 (Pharmacologic 3), 1 (1907) Google Scholar
  36. Booth, A .: Non Hormonal Growth Promotion Shown by Aqueous Extracts. J. exp. Bot. 9, 306 (1958). Google Scholar
  37. Borzi, A .: Produzione d’indolo e impollinazione della Visnea Macanera L. Atti Reale Accad. Naz. Lincei (Roma) [5] 13, 372 (1904). Google Scholar
  38. Bouveault, L. and R. Locquin: Preparation of the éthers et des acides a-cétoniques à l’aide des éthers ocoximidés (V). Bull. Soc. chim. France [3] 31, 1142 (1904). Google Scholar
  39. Bowden, K., B.G. Brown and J.E. Batty: 5-Hydroxytryptamine: its Occurrence in Cowhage. Nature (London) 174, 925 (1954). Google Scholar
  40. Bowden, K. and L. Marion: The Biogenesis of Alkaloids. IV. The Formation of Gramine from Tryptophan in Barley. Canad. J. Chem. 29, 1037 (1951). Google Scholar
  41. The Biogenesis of Alkaloids. V. Radioautographs of Barley Leaves fed with Tryptophan-JS-C. Canad. J. Chem. 29, 1043 (1951) Google Scholar
  42. Brandt, K., H. V. Euler, H. Hellström and N. Löfgren: Gramin and two companions of the same in leaves of barley varieties. Z. physiol. Chem. (Hoppe-Seyler) 235, 37 (1935) Google Scholar
  43. Brown, J.B., H.B. Henbest and E.R.H. Jones: 3-indolylacetaldehyde and 3-indolylacetone. J. Chem. Soc. (London) 1952, 3172. Google Scholar
  44. Bulard, C. and A. C. Leopold: 5-Hydroxytryptamine chez les végétaux supérieurs. C. R. hebd. Séances Acad. Sci. 247, 1382 (1958). Google Scholar
  45. Mise en évidence de l’activité de l’acide 5-hydroxyindolacetique sur l’elongation des cellules végétales. C. R. hebd. Séances Acad. Sci. (sous presse) .Google Scholar
  46. Cahill, W. M. and R. W. Jackson: The Proof of Synthesis and the Configurational Relationships of Abrine. J. Biol. Chem. 126, 29 (1938). Google Scholar
  47. Cerighelli, M. R .: Sur I’indol des fleurs du Jasmin d’Espagne. C. R. hebd. Séances Acad. Sci. 179, 1193 (1924). Google Scholar
  48. Christiansen, G. S. and K. V. Thimann: The Metabolism of Stem Tissue During Growth and Its Inhibition. III. Nitrogen Metabolism. Arch. Biochemistry 28, 117 (1950). Google Scholar
  49. Clarke, A.J. and P.J.G. Mann: The Oxidation of Tryptamine to 3-Indole-acetaldehyde by Plant Amine Oxidase. Biochemic. J. 65, 763 (1957) Google Scholar
  50. Collier, H. O. J .: The Occurrence of 5-Hydroxytryptamine in Nature. In: G. P. Lewis, 5-Hydroxytryptamine, p. 5. London and New York: Pergamon Press. 1958. Google Scholar
  51. Collier, H. O. J. and G.B. Chesher: Identification of 5-Hydroxytryptamine in the Sting of the Nettle (Urtica dioica). Brit. J. Pharmacol. 11, 186 (1956). Google Scholar
  52. Cramer, F .: About Inclusion Connections. IV. The inhibition of glycoside cleavage by cyclodextrin. Liebigs Ann. Chem. 579, 17 (1953). Google Scholar
  53. Curry, G.M., K.V. Thimann and P.M. Ray: The Base Curvature Response of Avena Seedlings to the Ultraviolet. Physiol. Plantarum 9, 429 (1956). Google Scholar
  54. Dakin, H. D .: The Oxidation of Amino Acids to Cyanides. Biochemic. J. 10, 319 (1916). Google Scholar
  55. Dalgliesh, C. E. R Metabolism of the Aromatic Amino Acids. Adv. Protein Chem. 10, 31 (1955) Google Scholar
  56. Dannenburg, W. N. and J. L. Liverman: Conversion of Tryptophan-2-C to Indoleacetic Acid by Watermelon Tissue Slices. Plant Physiol. 32, 263 (1957) Google Scholar
  57. Denffer, D. V., M. Behrens and A. Fischer: Paper chromatographic and paper electrophoretic detection of indoleacetonitrile and indolealdehyde in extracts from cabbage plants. Natural science 39, 550 (1952). Google Scholar
  58. Deulofeu, V., E. Hug and P. Mazzocco: Studies on Argentine Plants. Part I. Hypaphorine from Erythrina crystagalli. J. Chem. Soc. (London) 1939, 1841. Google Scholar
  59. Dunstan, W. R .: On the Occurrence of Skatole in the Vegetable Kingdom. Proc. Roy. Soc. (London) 46, 211 (1889). Google Scholar
  60. Dunstan, W. R. and T. A. Henry: Occurrence of Orthohydroxyacetophenone in the Volatile Oil of Chione glabra. J. Chem. Soc. (London) 75, 66 (1899). Google Scholar
  61. Ehrlich, F. and K. A. Jacobsen: About the conversion of amino acids into oxy acids by molds. Ber. German chem. Ges. 44, 888 (1911). Google Scholar
  62. Elze, F .: About the oil from Robinia pseudoacacia. Chem.-Ztg. 34, 814 (1910). Google Scholar
  63. Euler, H. V. and H. Erdtman: About gramin from Swedish barley clans. Liebigs Ann. Chem. 520, 1 (1935). Google Scholar
  64. Euler, H. V., H. Erdtman and H. Hellström: About the alkaloid Gramin. Ber. German chem. Ges. 69, 743 (1936). Google Scholar
  65. Euler, H. V. and H. Hellström: Spectrometric measurements on alcohol extracts from the leaves of chlorophyll mutants in barley. Z. physiol. Chem. (Hoppe-Seyler) 208, 43 (1932). Google Scholar
  66. About an indole derivative made from two chlorophyll-mutating barley strains. Z. physiol. Chem. (Hoppe-Seyler) 217, 23 (1933). Google Scholar
  67. Euler, H. v., H. Hellström and J. Hagen: About the indole base obtained from barley mutants Albina i and 3 and its conversion. Ark. Kemi, mineral. Geol. 11 B (36), 1 (1934). Google Scholar
  68. Euler, H. v., H. Hellström and N. Löfgren: On the chemical genetics of chlorophyll-mutating barley strains. Z. physiol. Chem. (Hoppe-Seyler) 234, 151 (1935) Google Scholar
  69. Fawcett, C. H., H. F. Taylor, R. L. Wain and F. Wightman: The Metabolism of Certain Acids, Amides and Nitriles within Plant Tissues. Proc. Roy. Soc. (London) 148 B, 543 (1958). Google Scholar
  70. Fawcett, C.H., R.L. Wain and F. Wightman: Beta-Oxidation of Omega- (3-Indolyl) alkanecarboxylic Acids in Plant Tissues. Nature (London) 181, 1387 (1958). Google Scholar
  71. Ferri, M. G .: Fluorescence and Photoinactivation of Indoleacetic Acid Arch. Biochem. Biophys. 31, 127 (1951). Google Scholar
  72. Fischer, A .: About the paper chromatographic and paper electrophoretic separation of indole derivatives. Planta 43, 288 (1954). Google Scholar
  73. Fish, M. S .: Personal communication, 1958. Google Scholar
  74. Fish, M.S., N.M. Johnson and E.C. Horning: Piptadenia Alkaloids. Indole Bases of P. peregrina (L.) Benth. and Related Species. J. Amer. Chem. Soc. 77, 5892 (1955). Google Scholar
  75. Fish, M.S., N.M. Johnson, E.P. Lawrence and E.C. Horning: Oxidative N-Dealkylation. Biochem. Biophys. acta 18, 564 (1955). Google Scholar
  76. Fish, M.S., C.C. Sweeley, N.M. Johnson, E.P. Lawrence, and E.C. Horning: Chemical and Enzymic Rearrangements of N, N-Dimethyl Amino Acid Oxides. Biochim. Biophys. Acta 21, 196 (1956). Google Scholar
  77. Folkers, K. and F. Koniuszy: Erythrina Alkaloids. III. Isolation and Characterization of a New Alkaloid, Erythramine. J. Amer. Chem. Soc. 61, 1232 (1939). Google Scholar
  78. Erythrina alkaloid. VII. Isolation and Characterization of the New Alkaloids, Erythraline and Erythratins. J. Amer. Chem. Soc. 62, 436 (1940). Google Scholar
  79. Folkers, K., J. Shavel, Jr. and F. Koniuszy: Erythrina Alkaloids. X. Isolation and Characterization of Erysonine and Other Liberated Alkaloids. J. Amer. Chem. Soc. 63, 1544 (1941) Google Scholar
  80. Frieber, W .: Contributions to the question of indole formation and indole reactions as well as knowledge of the behavior of indole-negative bacteria. Centralbl. Bacteria. and parasites 87, 254 (1921). Google Scholar
  81. Fukui, H.N., J.E. Devries, S.H. Wittwer and H.M. Sell: Ethyl-3-Indoleacetate: an Artefact in Extracts of Immature Corn Kernels. Nature (London) 180, 1205 (1957) Google Scholar
  82. Gale, E.F .: The Bacterial Amino Acid Decarboxylases. Adv. Enzymology 6, 1 (1946). Google Scholar
  83. Galston, A. W .: Indoleacetic-Nicotinic Acid Interactions in the Etiolated Pea Plant. Plant Physiol. 24, 577 (1949). Google Scholar
  84. Riboflavin-Sensitized Photooxidation of Indoleacetic Acid and Related Compounds. Proc. Nat. Acad. Be. (USA) 35, 10 (1949). Google Scholar
  85. Some Metabolic Consequences of the Administration of Indoleacetic Acid to Plant Cells. In: R. L. Wain and F. Wightman, The Chemistry and Mode of Action of Plant Growth Substances, p. 219. London: Butterworths. 1956. Google Scholar
  86. Galston, A. W. and M. E. Hand: Adenine as a Growth Factor for Etiolated Peas and its Relation to the Thermal Inactivation of Growth. Arch. Biochemistry 22, 434 (1949). Google Scholar
  87. Ghatak, N .: Chemical Examination of the Seeds of Abrus precatorius, III. Constitution of Abrine. Bull. Acad. Be. United Provinces Agra and Oudh, Allahabad 3 (4), 295 (1934) .Google Scholar
  88. Ghatak, N. and R. Kaul: Chemical Examination of the Seeds of Abrus precatorius Linn. Part I. J. Indian Chem. Soc. 9, 383 (1932). Google Scholar
  89. Gibson, F. W. E., C. H. Doy and S. B. Segall: A Possible Intermediate in the Biosynthesis of Tryptophan: i-Deoxy-i-N-o-Carboxyphenyl-Ribulose. Nature (London) 181, 549 (1958). Google Scholar
  90. Good, N.E .: The Synthesis of Indole-3-acetyl-D, L-aspartic Acid and Related Compounds. Canad. J. Chem. 34, 1356 (1956). Google Scholar
  91. Good, N.E. and W.A. Andreae: Malonyltryptophan in Higher Plants. Plant Physiol. 32, 561 (1957) Google Scholar
  92. Good, N. E., W. A. ​​Andreae and M. W. H. Van Ysselstein: Studies on 3-Indoleacetic Acid Metabolism. II. Some Products of the Metabolism of Exogenous Indoleacetic Acid in Plant Tissues. Plant Physiol. 31, 231 (1956). Google Scholar
  93. Gordon, S. A .: Occurrence, Formation and Inactivation of Auxins. Annu. Rev. Plant Physiol. 5, 341 (1954). Google Scholar
  94. The Biogenesis of Natural Auxins. In: R. L. Wain and F. Wightman, The Chemistry and Mode of Action of Plant Growth Substances, p. 65. London: Butterworths. 1956. Google Scholar
  95. The Effects of Ionizing Radiation on Plants: Biochemical and Physiological Aspects. Quart. Rev. Biol. 32, 3 (1957). Google Scholar
  96. Intracellular Localization of the Tryptophan-Indoleacetate Enzyme System. Plant Physiol. 33, 23 (1958). Google Scholar
  97. Gordon, S.A. and F. S. Nieva: The Biosynthesis of Auxin in the Vegetative Pineapple. I. Nature of the Active Auxin. Arch. Biochemistry 20, 356 (1949). Google Scholar
  98. The Biosynthesis of Auxin in the Vegetative Pineapple. II. The Precursors of Indoleacetic Acid. Arch. Biochemistry 20, 367 (1949). Google Scholar
  99. Gordon, S. A. and R. P. Weber: Studies on the Mechanism of Phytohormone Damage by Ionizing Radiation. I. The Radiosensitivity of Indoleacetic Acid. Plant Physiol. 30, 200 (1955). Google Scholar
  100. Gordon, S. A. and S. G. Wildman: The Conversion of Tryptophane to a Plant Growth Substance by Conditions of Mild Alkalinity. J. Biol. Chem. 147, 389 (1943) Google Scholar
  101. Gordon, W. G .: The Metabohsm of N-Methylated Amino Acids. II. The Comparative Availability of l (-) - Tryptophane, l (+) - and dl-Amino-N-monomethyltryptophane for Growth. J. Biol. Chem. 129, 309 (1939) Google Scholar
  102. Gordon, W. G. and R. W. Jackson: The Metabolism of Certain Monomethyl Tryptophanes. J. Biol. Chem. No, 151 (1935). Google Scholar
  103. Gots, J.S. and S. H. Ross: The Accumulation of Indole-3-glycerol by Tryptophan Auxotrophs of Escherichia coli. Biochim. Biophys. Acta 24, 429 (1957) Google Scholar
  104. Gray, P. H. H .: The Formation of Indigotin from Indol by Soil Bacteria. Proc. Roy. Soc. (London) 102 B, 263 (1927). Google Scholar
  105. Gray, R.A.: Preparation and Properties of 3-Indoleacetaldehyde. Arch. Biochem. Biophys. (in press) .Google Scholar
  106. Greenberg, D. M .: Carbon Catabolism of Amino Acids. In: Chemical Pathways of Metabolism, Vol. II, p. 47. New York: Academic Press. 1954. Google Scholar
  107. Synthetic Processes Involving Amino Acids. In: Chemical Pathways of Metabolism, Vol. II, p. 113. New York: Academic Press. 1954. Google Scholar
  108. Greenberg, J. B .: Reactions of Possible Significance in the Synthesis of Indolic Auxins in Higher Plants. Thesis, Yale University, 1958. Google Scholar
  109. Greenberg, J.B., A. W. Galston, K. N. F. Shaw and M.D.Armstrong: Formation and Auxin Activity of Indole-3-Glycolic Acid. Science (Washington) 125, 992 (1957) Google Scholar
  110. Greshoff, M .: Hoofdstuk. II. First Bijdrage tot de Chemisch-Pharmacologische Kennis van Nederlandsch-Indian Leguminosen. 4. Erythrina (Hypaphorus) suhumbrans HASSK. Mededeel. Lands Plantentuin, Buitenzorg 7, 29 (1890) .Google Scholar
  111. Onderzoek naar de plant fabrics: Sterculiaceae. Mededeel. Lands Plantentuin, Buitenzorg 25, 36 (189S). Google Scholar
  112. Onderzoek naar de plant materials: Leguminosae, Erythrynia L. Mededeel. Lands Plantentuin, Buitenzorg 25, 54 (1898) .Google Scholar
  113. Onderzoek naar de plant fabrics. Urticaceae. Mededeel. Lands Plantentuin, Buitenzorg 25, 175 (1898) .Google Scholar
  114. Gruen, H. E .: Auxins and Fungi. Annu. Rev. Plant Physiol. 10 (1959), in press.Google Scholar
  115. Gustafson, F. G .: Tryptophane as ans Intermediate in the Synthesis of Nicotinic Acid by Green Plants. Science (Washington) no, 279 (1949). Google Scholar
  116. Haagen-Smit, A. J., W. B. Dandliker, S. H. Wittwer and A. E. Murneek: Isolation of 3-Indoleacetic Acid from Immature Corn Kernels. Amer. J. Bot. 33, 118 (1946). Google Scholar
  117. Haagen-Smit, A. J., W. D. Leech and W. R. Bergren: The Estimation, Isolation and Identification of Auxins in Plant Materials. Amer. J. Bot. 29, 500 (1942). Google Scholar
  118. Hadders, M .: Systematic distribution and occurrence of indoxyl glucosides. In: G. Klein, Handbuch der Pflanzenanalyse, Vol. III (2), p. 1062. Vienna: Springer-Verlag. 1932. Google Scholar
  119. Happold, F. C .: Tryptophanase-Tryptophan Reaction. Adv. Enzymology 10: 51 (1950). Google Scholar
  120. Harada, T .: A New Bacterium in Urine which makes Lignin Red. V. The Relation between the Lignin Red Bacterium and A. I. Bacterium. J. Agrie. Chem. Soc. Japan 23, 96 (1949) [Chem. Abstr. 44, 8419 (1950)]. Google Scholar
  121. Harding, F .: Etudes sur le tryptophane, i. Variation au cours de la germination. Arch. Is. physiol. 1, 193 (1947). Google Scholar
  122. Hazewinkel, J. J .: Indican. Its Hydrolysis and the Enzyme Causing the Same. Con. Ned. Akad. Wetensch. Proc. 2, 512 (1900).