Mihai Lesaru doctor who

Image-guided breast biopsy and localization: recommendations for information to women and referring physicians by the European Society of Breast Imaging

  • Ulrich Bick1,
  • Rubina M. Trimboli2,
  • Alexandra Athanasiou3,
  • Corinne Balleyguier4,
  • Pascal A. T. Baltzer5,
  • Maria Bernathova5,
  • Krisztina Borbély6,
  • Boris Brkljacic7,
  • Luca A. Carbonaro8,
  • Paola Clauser5,
  • Enrico Cassano9,
  • Catherine Colin10,
  • Gul Esen11,
  • Andrew Evans12,
  • Eva M. Fallenberg13,
  • Michael H. Fuchsjaeger14,
  • Fiona J. Gilbert15,
  • Thomas H. Helbich5,
  • Sylvia H. Heywang-Köbrunner16,
  • Michel Herranz17,
  • Karen Kinkel18,
  • Fleur Kilburn Toppin15,
  • Christiane K. Kuhl19,
  • Mihai Lesaru20,
  • Marc B. I. Lobbes21,
  • Ritse M. Mann22,
  • Laura Martincich23,
  • Pietro Panizza24,
  • Federica Pediconi25,
  • Ruud M. Pijnappel26,
  • Katja Pinker5,27,
  • Simone Schiaffino8,
  • Tamar Sella28,
  • Isabelle Thomassin-Naggara29,
  • Anne Tardivon30,
  • Chantal Van Ongeval31,
  • Matthew G. Wallis32,
  • Sophia Zackrisson33,
  • Gabor Forrai34,
  • Julia Camps Herrero35 &
  • Francesco SardanelliORCID: orcid.org/0000-0001-6545-94278,36
  • for the European Society of Breast Imaging (EUSOBI), with language review by Europa Donna – The European Breast Cancer Coalition

Insights into Imagingvolume 11, Article number: 12 (2020) Cite this article

  • 9393 accesses

  • 24 citations

  • 8 Altmetric

  • Metrics details


We summarize here the information to be provided to women and referring physicians about percutaneous breast biopsy and lesion localization under imaging guidance. After explaining why a preoperative diagnosis with a percutaneous biopsy is preferred to surgical biopsy, we illustrate the criteria used by radiologists for choosing the most appropriate combination of device type for sampling and imaging technique for guidance. Then, we describe the commonly used devices, from fine-needle sampling to tissue biopsy with larger needles, namely core needle biopsy other vacuum-assisted biopsy, and how mammography, digital breast tomosynthesis, ultrasound, or magnetic resonance imaging work for targeting the lesion for sampling or localization. The differences among the techniques available for localization (carbon marking, metallic wire, radiotracer injection, radioactive seed, and magnetic seed localization) are illustrated. Type and rate of possible complications are described and the issue of concomitant antiplatelet or anticoagulant therapy is also addressed. The importance of pathological-radiological correlation is highlighted: when evaluating the results of any needle sampling, the radiologist must check the concordance between the cytology / pathology report of the sample and the radiological appearance of the biopsied lesion. We recommend that special attention is paid to a proper and tactful approach when communicating to the woman the need for tissue sampling as well as the possibility of cancer diagnosis, repeat tissue sampling, and or even surgery when tissue sampling shows a lesion with uncertain malignant potential (also referred to as “high-risk” or B3 lesions). Finally, seven frequently asked questions are answered.

Key points

  • Image-guided needle biopsy is a safe and accurate non-surgical method to diagnose suspicious abnormal findings at breast imaging, pivotal for adequate decision-making, including treatment planning.

  • Complete and adequate information must be given to the woman before image-guided breast interventions and informed consent should be obtained from the woman before the procedure.

  • The combination of device for sampling and image modality for guidance is chosen by the radiologist for each individual case.

  • Pathological-radiological correlation, i.e., the check of concordance between cytology / pathology report of the sample and radiological appearance of the lesion, must be performed.

  • Image-guided preoperative localization is mandatory for guiding surgery of nonpalpable lesions or surgically relevant extension of palpable lesions.


Percutaneous image-guided needle biopsy is essential in the management of suspicious breast lesions detected by screening or during the assessment of clinical abnormalities. It is a safe and cost-effective procedure allowing for an accurate diagnosis, pivotal for adequate decision-making, including, when indicated, treatment planning. Percutaneous image-guided breast biopsies have almost entirely replaced diagnostic surgical excisions that were associated with longer hospital stay, higher costs, and possible complications. In 2010, the European Society of Breast Cancer Specialists, EUSOMA, suggested that 90% of all the women with breast cancer (invasive or ductal carcinoma in situ [DCIS]) should have a preoperative diagnosis by means of percutaneous biopsy [1].

Moreover, the increasing rate of nonpalpable breast lesions detected in screening programs as well as the general goal of reducing the extent of surgical treatment have increased the need for localization before surgery. Localization can also be performed when neoadjuvant therapy is under consideration in order to mark the lesion site for re-evaluation and treatment planning. It is routinely performed using the same image guidance techniques used for biopsy and allows for conservative surgical excision of a limited amount of tissue, yielding together an effective treatment and good aesthetic results [2, 3].

Different modalities are available for image-guided breast biopsy and localization procedures, each of them with their own strengths and weaknesses [4,5,6]. The most appropriate method is chosen by radiologists for each individual case. Breast radiologists covering the full spectrum of breast imaging and percutaneous tissue sampling techniques (including the use of markers) and presurgical localization methods are the most suitable professionals for choosing the optimal technique. When localizing methods imply the use of radiotracers or radioactive seeds, radiopharmacy and radio safety training (or cooperation with nuclear medicine / radiotherapy departments) is needed.

This article is the fifth of a series of recommendations for women's information, all issued by the European Society of Breast Imaging, EUSOBI, the first [7] and the third [8] focusing on mammography, the second on breast magnetic resonance imaging (MRI ) [9], and the fourth on breast ultrasound (US) [10]. The current article also represents an update of a previous EUSOBI guideline regarding diagnostic interventional breast procedures, published in 2007 [11]. It is in particular addressed to patients for whom an image-guided breast biopsy or localization is, or may be, under consideration and to physicians dealing with these patients. In particular, eight special information notes (from A to H) and seven frequently asked questions (FAQs) are formulated for direct communication with women. Considering the differences across European countries in terms of available technology, national guidelines, clinical practices, health care systems, and insurance coverage, the applications of these recommendations can vary under local conditions.

A search on the PubMed / Medline has been performed for papers published from January 2009 to March 2019, using the terms “breast” AND “biopsy” OR “fine needle” OR “localization” OR “marker” OR “interventional”. Articles with an informative content most suitable for the purpose of these recommendations were selected as references with special regard to predetermined issues: safety / quality, protocols and techniques, test performance (sensitivity and specificity), and clinical indications. Other articles were included when found to be important among the references of the retrieved articles or when suggested by one or more authors. The entire text underwent a double evaluation by the authors, each of them contributing with relevant intellectual content. However, as many different topics are considered, single authors generally agreeing on these recommendations may have different opinions on individual statements.

This article summarizes the information to be provided to women and referring physicians about percutaneous breast biopsy and presurgical localization under the guidance of mammography / tomosynthesis, US, and MRI.

Why is preoperative diagnosis through a percutaneous biopsy preferred to surgical biopsy?

Currently, even taking into account recent advances in breast imaging, tissue sampling represents the most accurate method for confirmation or exclusion of malignancy [4]. In fact, there are a variety of benign abnormalities which can mimic malignancy on all breast imaging modalities, i.e., mammography and other x-ray techniques (including tomosynthesis and contrast-enhanced mammography), US, and MRI. The reason to perform a percutaneous biopsy is to prevent unnecessary surgery, associated morbity and costs for equivocal findings on imaging with final non-malignant histopathology. In addition, tailored treatment strategies are currently available including chemotherapy and hormonal therapy before or after surgery (so-called neoadjuvant therapy or adjuvant therapy, respectively), surgical options from lumpectomy to mastectomy with immediate reconstruction, whole or partial breast radiation therapy. The choice among all these options is influenced not only by imaging findings (especially in relation to disease extent) but also by the diagnosis based on percutaneous tissue sampling, in particular when the analysis includes not only basic morphological characteristics but also the molecular pattern of the tumor [11]. Moreover, needle sampling of axillary lymph node, when indicated, adds information for treatment planning [12,13,14].

We will describe here the details of the different technical options for breast tissue sampling — fine-needle sampling (FNS), core needle biopsy (CNB), and vacuum-assisted biopsy (VAB) —and the imaging modalities for guidance.

We highlight the results of the latest systematic review of the literature and meta-analysis, published in 2014 by the United States Agency for Healthcare Research and Quality [15]. Based on 160 studies using CNB and VAB techniques, the authors found that both US-guided and mammography-guided biopsies had average sensitivities over 97% and specificities ranging from 92 to 99% while non-imaging-guided free-hand biopsy methods had an average sensitivity of 91% and specificity of 98%. Considering that free-hand non-imaging-guided biopsies are performed only on large palpable lesions, image-guided biopsies had better results for the more demanding task of sampling non-palpable, smaller lesions. For this reason, free-hand breast biopsy cannot be recommended whenever image-guided biopsy is available. CNB and VAB devices (under the same imaging guidance) had similar performances; CNB was found to be associated with a lower risk of adverse events and complications than open surgical biopsy, which were sparsely reported (e.g., 2–10% haematomas, 4% repeat biopsy, 4–6% infections, 2% abscesses). The incidence of adverse events with CNB was found to be 1–1.5% and that of severe complications less than 1% for all needle sampling techniques; VAB appeared to be associated with increased bleeding and haematoma formation; biopsies performed with patients seated upright appeared to be associated with increased risk of vasovagal reactions; CNB obviated the need for surgery procedures in about 75% of women. The authors concluded that the evidence suggests that US-guided and mammography-guided biopsies have sensitivity and specificity close to that of surgical biopsy with fewer adverse events and that non-imaging-guided free-hand procedures have lower sensitivity than image-guided methods. This large literature review clearly explained the reasons for recommending image-guided biopsy instead of surgical biopsy as a general rule of good practice. However, with regard to VAB versus CNB, lesion size and type must be considered and this may have resulted in an underestimation of the potential advantages of VAB over CNB, particularly when using mammography, tomosynthesis, or MRI guidance.

It is important to note that percutaneous needle biopsy may not provide a definitive diagnosis when the histopathological report describes the presence of a lesion with uncertain malignant potential (also called high-risk or B3 lesion). This occurs in 3 to 9% of cases, with a range of rates turning out to be malignant (10–33% or also higher rates) [10, 16,17,18,19,20,21,22,23,24 , 25]. These lesions include atypical ductal hyperplasia, benign phyllodes tumors, flat epithelial atypia, classical lobular neoplasia, papillary lesions, radial scars, and other rare entities. Each of them, when surgically removed, shows a variable upgrade rate to invasive cancer or DCIS [26]. Although a small but significant increase of imaging surveillance has been described for classical lobular neoplasia, flat epithelial atypia, and papillary lesions diagnosed on VAB instead of surgical removal, from 24 to 35% of high-risk / B3 lesions (in particular, atypical ductal hyperplasia and phyllodes tumors), are recommended for surgery [27]. In addition, breast specialists should take into account that women diagnosed with high-risk / B3 lesions have a long-term moderately increased risk of breast cancer [28].

Women should be informed that the radiologist may propose a repeat needle sampling or surgical intervention also in the case of biopsy resulting into normal breast tissues or benign abnormalities. After a negative breast tissue needle sampling, imaging follow-up is usually planned, with imaging modalities and time interval to be defined for each individual case.

Grade A.Percutaneous image-guided biopsy has replaced surgical biopsy allowing a minimally invasive safe, accurate, and cost-effective diagnosis of breast lesions, necessary for the definition of treatment planning. In the case of a biopsy resulting in a pathological diagnosis of a high-risk / B3 lesion, discuss with your radiologist and the breast care team the best option for you (either repeat biopsy, surgical removal, or imaging surveillance). After a negative image-guided tissue sampling, imaging follow-up is usually planned, with imaging modalities and time interval to be defined for each individual case.

Options for breast tissue sampling: from thin to thick needles

Different percutaneous image-guided techniques are available to diagnose palpable and non-palpable breast lesions. In the last decades, they have improved patient management, avoiding unnecessary surgical biopsy for benign lesions [29]. Nowadays, FNS, CNB, and VAB coexist, the first providing material for studying cells (cytological examination), the last two providing material for studying tissues (histopathological examination). All these techniques can be theoretically guided by mammography, tomosynthesis, US, or MRI. However, FNS and CNB should be used under US guidance, VAB under mammography / tomosynthesis or MRI guidance. These prevalent combinations are due to both technical considerations, including visibility at each technique and lesion types detected. Breast size, lesion location and size as well as local availability of instrumentation and expertise are taken into account. Table 1 shows the indications for the combinations between imaging guidance and sampling type.

Whenever the lesion is well identified on US, This technique is preferred due to the easy approach and the short duration of the procedure (implying a more comfortable womans experience) as well as a lower cost. If a lesion is not clearly identifiable on US, mammography, tomosynthesis or MRI is used for guidance, typically the former in the case of suspicious calcifications and architectural distortions and the latter in the case of lesions only visible on MRI [30].

Needles of different size and length are adopted for percutaneous image-guided biopsies. The diameter is described by gauge numbers. Differently from an intuitive reasoning, smaller gauge numbers indicate larger needle diameters. Commonly applied needles have a diameter ranging from 0.4 (27 gauge) to almost 4.6 mm (7 gauge).

Fine-needle sampling

As mentioned before, FNS is performed almost only under US guidance. Local anesthesia can be performed but it is not ubiquitous practice. A fine needle with diameter variable from 27 to 18 gauge (same or similar to those used for intramuscular injections) is inserted very close to the US probe and, once the needle is seen inside the target, a manual multidirectional sampling is performed, through aspiration using a 10-20-mL syringe or a vacuum aspiration system (fine-needle aspiration) or simply by manual movement of the needle inside the lesion (fine-needle capillary sampling) for about 10-20 sec. The extracted material is then spread onto slides and placed in formalin for cytological analysis. The procedure is easy, safe, and fast to perform and the associated cost is very low. When the cytopathologist is onsite during the sampling, results may be available very soon after the procedure [31]. The success of the technique is highly dependent on the skills of the physician performing the sampling and of the cytopathologist interpreting the sample as well on their interplay [32]. A meta-analysis published in 2008 [33] reported on 25 studies describing FNS cytology analyzes performed from 1984 to 2007 on palpable breast masses. The pooled sensitivity was 93% (range 78-100%) and the pooled specificity 98% (range 76-100%). A significant increase in diagnostic performance was shown during the years and attributed to technological improvements. However, we should note that the report considered only FNS performed on palpable, i.e., relatively large, masses.

It is not surprising that higher rates of inadequate or false-negative results and lower accuracy rates have been reported for FNS compared to CNB. In fact, relying only on cells, FNS cytology cannot always reliably distinguish between benign tissues, high-risk / B3 lesions, DCIS, and invasive malignant changes. In many centers, the information about tumor biomarker status (especially required when a neoadjuvant treatment is under consideration) cannot be obtained from FNS [11]. For these reasons, FNS has increasingly been replaced by CNB or VAB in the diagnosis of breast lesions [34, 35]. As already said, FNS cytology reliability must be considered strongly depending on local factors, i.e., on the experience of operators as well as the presence of a cytopathologist in the room during the procedure. When its performance is high, it can be used as the first fast approach, using CNB or VAB as the second step, when needed.

US-guided fine-needle aspiration is widely accepted for draining complicated cysts (e.g., cysts with internal debris), seromas or haematomas, for therapeutic purposes for pain relief from swelling cysts, or in the case of therapy of lactational and non-lactational breast abscesses, as an effective alternative to surgery [36,37,38,39]. In particular, lactational abscesses can be managed by US-guided percutaneous treatment, avoiding surgery even for abscesses greater than 5 cm and allowing continued breastfeeding [38]. In the case of complex cysts (thick-walled cystic lesions with or without thick internal septations, intracystic solid masses, and mixed cystic / solid lesions), CNB is preferred [36].

Core needle biopsy

Ultrasound guidance is the most commonly used approach for CNB. After local anesthesia is administered through subcutaneous injections of drugs similar to those used by dentists (e.g., lidocaine), a needle with a size usually varying from 16 to 12 gauge (most commonly 14 gauge), is inserted by the radiologist, often through a small skin incision. Once the needle is confirmed to be on target, a tissue sample (core) is obtained with a needle of variable length (from about 10 to over 20 mm), depending on the device used, and immediately fixed in small formalin containing jars. Since a lesion may be pushed ahead while shooting, the longer samples obtained from longer acquisition chambers are usually preferred. Biopsy devices utilize a spring-loaded needle (or “gun”) that are semiautomatically or automatically fired into the lesion. This fire is accompanied by a noise and the patient should be informed of this to avoid movements during the biopsy. A variable number of cores (usually 3–5) are obtained through subsequent samples and needle extractions. Images are acquired to document the correct needle positioning [40