Mosabbir Chowdhury Avery Dennis

History of vertical farming

A commercial high-rise farm such as 'The Vertical Farm' has never been built, yet extensive photographic documentation and several historical books on the subject suggest that research on the subject was not diligently pursued. New sources indicate that a tower hydroponicum existed in Armenia prior to 1951.


Proponents argue that, by allowing traditional outdoor farms to revert to a natural state and reducing the energy costs needed to transport foods to consumers, vertical farms could significantly alleviate climate change produced by excess atmospheric carbon. Critics have noted that the costs of the additional energy needed for artificial lighting, heating and other vertical farming operations would outweigh the benefit of the building’s close proximity to the areas of consumption. However, a recent study published in the Journal of Agricultural Engineering and Biotechnology has utilized inexpensive metal reflectors to supply sunlight to the plants.


One of the earliest drawings of a tall building that cultivates food was published in Life Magazine in 1909. The reproduced drawings feature vertically stacked homesteads set amidst a farming landscape. This proposal can be seen in Rem Koolhaas's Delirious New York. Koolhaas wrote that this 1909 theorem is 'The Skyscraper as Utopian device for the production of unlimited numbers of virgin sites on a metropolitan location' (1994, 82).


Other architectural proposals that provide the seeds for the Vertical Farm project include Le Corbusier's Immeubles-Villas (1922) and SITE's Highrise of homes (1972). SITE's Highrise of homes, is a near revival of the 1909 Life Magazine Theorem. In fact, built Examples of tower hydroponicums are quite well documented in the canonical text of "The Glass House" by John Hix. Images of the vertical farms at the School of Gardeners in Langenlois, Austria, and the glass tower at the Vienna International Horticulture Exhibition (1964) clearly show that vertical farms existed more than 40 years prior to contemporary discourse on the subject. Although architectural precedents remain valuable, the technological precedents that make vertical farming possible can be traced back to horticultural history through the development of greenhouse and hydroponic technology. Early building types or Hydroponicums were developed, integrating hydroponic technology into building systems. These horticultural building systems evolved from greenhouse technology, and paved the way for the modern concept of the vertical farm. The British Interplanetary Society developed a hydroponicum for lunar conditions and other building prototypes were developed during the early days of space exploration. During this era of expansion and experimentation, the first Tower Hydroponic Units were developed in Armenia.


The Armenian tower hydroponicums are the first built examples of a vertical farm, and is documented in Sholto Douglas' seminal text "Hydroponics: The Bengal System" first published in 1951 with data from the then-East Pakistan, today's Bangladesh, and the Indian state of West Bengal. Contemporary notions of vertical farming are predated by this early technology by more than 50 years. Contemporary precursors that have been published, or built, are Ken Yeang’s Bioclimatic Skyscraper (Menara Mesiniaga, built 1992); MVRDV’s PigCity, 2000; MVRDV's Meta City / Datatown (1998-2000); Pich-Aguilera’s Garden Towers (2001).


Ken Yeang is perhaps the most widely known architects that has promoted the idea of ​​the 'mixed-use' Bioclimatic Skyscraper which combines living units and opportunities for food production.


Early prototypes of vertical farms, or "Tower Hydroponicums" existed in Armenia prior to 1951 during an era of hydroponic and horticultural building system, research fueled by space exploration and a transatlantic technology race.


The latest version of these very idea is Dickson Despommier's "The Vertical Farm".

Dickson Despommier, a professor of environmental health sciences and microbiology at Columbia University in New York City, modernized the idea of ​​vertical farming in 1999 with graduate students in a medical ecology class. Although much of Despommier's suggestions have been challenged and strongly criticized from an environmental science and engineering point of view, the idea's popularization in recent years has been largely the result of Despommier's assertion that food production can be transformed.


Despommier had originally challenged his class to feed the population of Manhattan (About 2,000,000 people) using 5 hectares (13 acres) of usable rooftop gardens. The class calculated that, by using rooftop gardening methods, only 2 percent would be fed. Unsatisfied with the results, Despommier made an off-the-cuff suggestion of growing plants indoors, vertically. The idea sparked the students' interests and gained major momentum. By 2001 the first outline of a vertical farm was introduced and today scientists, architects, and investors worldwide are working together to make the concept of vertical farming a reality. In an interview with, Despommier described how vertical farms would function:



"Each floor will have its own watering and nutrient monitoring systems. There will be sensors for every single plant that tracks how much and what kinds of nutrients the plant has absorbed. You'll even have systems to monitor plant diseases by employing DNA chip technologies that detect the presence of plant pathogens by simply sampling the air and using snippets from various viral and bacterial infections. It's very easy to do.


Moreover, a gas chromatograph will tell us when to pick the plant by analyzing which flavenoids the produce contains. These flavonoids are what gives the food, the flavors you're so fond of, particularly for more aromatic produce like tomatoes and peppers. These are all right-off-the-shelf technologies. The ability to construct a vertical farm exists now. We don't have to make anything new. "



Architectural designs have been produced by Chris Jacobs and Andrew Kranis from Columbia University and Gordon Graff from the University of Waterloo's School of Architecture in Cambridge, ON. Together with Graff, and after disagreeing with Despommier's technical assumptions regarding energy and water balancesi n 2011, Tahbit Chowdhury and a multidisciplinary team from Waterloo's Dept. of Environmental Engineering and Dept. of Systems Design Engineering augmented the concepts with a focus on low-energy, economically-intensive protein-production. Along with Chowdhury, others who have disagreed with Despommier's approach include Pierre Desrochers of the University of Toronto and Dennis T. Avery of the Center for Global Food Issues, affiliated with the Hudson Institute.


Chowdhury and Graff applied advanced industrial engineering design philosophies to modernize current greenhouse technology as it pertains to hydroponics and aeroponics. The results of the Waterloo team's work showed that there is sufficient technical grounds to begin implementing Despommier's ideas for skyscrapers. However, Chowdhury and Graff showed that the designs will be dramatically different from what Despommier envisioned at Columbia.

Mass media attention began with an article written in New York magazine. Since 2007, articles have appeared in The New York Times, U.S. News & World Report, Popular Science, Scientific American and Maxim, among others, as well as radio and television features.


As of 2012, Vertical Harvest is working on raising funds for an urban, small-scale vertical farm in Jackson Hole, Wyoming.

(Via : wiki)

Sustainable Aspect: Green: Nature & Landscape