What does RW90 cable

electric energy supply

Klaus-Dieter Dettmann
Detlef Schulz

electric energy supply

From the program


Electrical Power Engineering

Vieweg Handbook of Electrical Engineering


edited by W. Bge and W. Plamann
Vieweg Taschenlexikon Technik
edited by A. Bge
Electrical engineering formulas and tables
edited by W. Bge and W. Plamann
Electric machines and drives
by K. Fuest and P. Dring
Switching power supplies and their peripherals
by U. Schlienz
Basic course in power electronics
by J. Specovius

vieweg

Klaus Heuck
Klaus-Dieter Dettmann
Detlef Schulz

Electric
power supply
Generation, transmission
and distribution of electrical energy
for study and practice
7th, completely revised
and extended edition
With 638 illustrations, 36 tables
and 75 problems with solutions

Bibliographic information from the German National Library


The German National Library lists this publication in the
German National Bibliography; detailed bibliographic data are available on the Internet
available.

Univ.-Prof. Dr.-Ing. Klaus Heuck, Dipl.-Ing., Specializes in electrical energy supply
and high voltage technology at the Helmut Schmidt University / University of the Federal Armed Forces
Hamburg represented until November 2005.
Dr.-Ing. Klaus-Dieter Dettmann, Dipl.-Ing., Is Academic Director and Laboratory Manager of
Department of Electrical Energy Systems at the Helmut Schmidt University / University of the
Federal Armed Forces Hamburg.
Univ.-Prof. Dr.-Ing. habil. Detlef Schulz, Dipl.-Ing., Represents the electrical department
Energy systems at the Helmut Schmidt University / University of the Federal Armed Forces Hamburg
since December 2005.

1st edition 1984
2nd, revised edition 1991
3rd, completely revised and expanded edition 1995
4th, completely revised and expanded edition 1999
5th, completely revised edition September 2002
6th, completely revised and expanded edition February 2005
7th, completely revised and expanded edition 2007
All rights reserved
Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden, 2007
Editing: Reinhard Dapper / Imke Zander
Vieweg Verlag is a Springer Science + Business Media company.
www.vieweg.de
The work including all of its parts is protected by copyright. Any use outside the narrow limits of copyright law without the consent of the publisher is inadmissible and punishable. This applies in particular to copies, translations,
Microfilming and the storage and processing in
electronic systems.
Typesetting and layout: Endrik Waldhaim, Hamburg
Drawing work: Andrea Jacob, Wiebke Jrgens, Endrik Waldhaim, Hamburg
Cover design: Ulrike Weigel, www.CorporateDesignGroup.de
Printing and bookbinding processing: Wilhelm & Adam, Heusenstamm
Printed on acid-free and chlorine-free bleached paper.
Printed in Germany
ISBN 978-3-8348-0217-0

Preface
This book, Electrical Energy Supply, provides the basic knowledge
se that are expected by students as well as young electrical engineers, when
you want to work for a manufacturer or operator of power engineering systems.
Accordingly, this book covers the entire spectrum of electrical energy supply. The chain from energy generation to consumers is dealt with. The main focus is on the facilities for transmission and distribution
electrical energy. The necessary theoretical equipment is based on technological
modern, practical constructions developed. It is important to
that the current status of the essential standards (VDE regulations, DIN, EN, IEC)
is taken into account and already included in the derivation of the project planning methods.
These considerations should also apply to the engineer who is already working
be of interest if he wants to refresh or expand his knowledge.
When designing the book, care was taken to ensure that it is for a
Self-study is suitable. So the individual terms are always developed logically.
In addition, basic knowledge that is not generally available after the pre-examination at a
University or technical college must be available, explained again or at least
striped. Examples of this are the calculation of galvanically-inductively coupled circuits
as well as the portrayal of nets. At the end of the day follow the
Chapter 75 tasks in total; the corresponding solutions are in front of the appendix to
nd.
In order to further increase the understanding of the book, the models and thus
Also, the analytical formulation was initially kept very simple. Unless the
Idealization for important areas of practice is too extensive, becomes more complex
Models received. The arguments are increasingly based on physical plausibility.
The structure described is a characteristic of this book and is also at
all extensions from edition to edition have been consistently adhered to. This alignment is arguably a major reason why the previous six editions as well
a reprint that has been well received by the market. Another reason for this
The authors see acceptance in the fact that they have constantly updated the book. So is in
of the present seventh edition, the section on regenerative energy generation
updated and significantly expanded. This step became necessary because this species
energy generation has steadily gained in importance and is now of considerable importance. In addition, the amendment to the Energy Industry Act
Modified the deregulation of the electricity industry in 2005. These developments have also been taken into account in this edition. Additionally are
Statements across the breadth of the book have been revised. Representative is as
first example the calculation of the net values ​​from the stationary admittance matrix
called; in a separate section, inter alia the influence of the feed sources worked out. As a second example, consider the effects of network asymmetries on the
compensated network operation. In addition, numerous text passages are didactic
been made clearer.
The team of authors has also changed for this edition. Prof. Reuter is no longer actively working on the book, in which he has been involved since the second edition.

VI

Preface

This step is understandable, as it was over ten years ago that the age limit for
Has reached retirement. Previously, he was director of electrical engineering in a regional energy supply company. In this leading position he has
very detailed knowledge of the operation and planning of networks acquired
are of course poured into this book. You have particular in the second and
Third edition concretized in numerous Denkansten, which have significantly improved the practical relevance of the book. At this point, the authors would like to thank you again
for the committed cooperation and we hope that Prof. Reuter will remain with you as a discussion partner. Prof. Schulz is a new member of the team of authors
entered and helped shape the revision of the seventh edition.
To a large extent, the technical development of the book is based on the suggestions for improvement received from the readership. Lots of these suggestions
are included in the reviews that were sent to the authors in the sixth edition and that they found to be very positive. Hug will
praised the practical relevance of the book. This quality of the book is not least due to the fact that the authors sought the advice of prolific experts in areas in which they judged their own on-site experience to be insufficient
and have incorporated. In the earlier editions, Prof.
Funk (Hanover), Prof. Hosemann (Erlangen), Prof. Oswald (Hanover) and Dr. Lockpick
(Nürnberg) to be mentioned. When updating the book, the authors did turn
Dr. Rosenberger (Hamburg) asked you for any changes in the area
the deregulation that has arisen since the sixth edition was published. Dr. Rosenberger this wish
gladly and comprehensively complied with. The authors would like to thank you for this.
Furthermore we are Mr. Dipl.-Ing. Thanks to Waldhaim very much. Without their commitment and active help, this seventh edition could not have appeared. As part of the revision, a number of new images had to be designed.
This drawing work was carried out very precisely and with great dedication by Mr. Waldhaim, employee of the Electrical Energy Systems department. In addition, has
he now for the sixth time with a lot of energy and meticulousness the entire sentence
as well as the layout of the book. The drawings, which were taken over unchanged from the sixth edition, were of high quality by Ms. Jrgens and Ms.
Jacob made.
The authors also owe thanks to the Vieweg publishing house for their willingness to publish the seventh
Edition. The Ritz Messwandler Hamburg,
the company EMH Energie-Messtechnik from Hamburg, areva in Frankfurt, Plambeck Neue
Energies in Cuxhaven and the software and consulting company DIgSILENT
from Gomaringen financially supported this edition; Thank you for that.

Hamburg, June 2007


Klaus Heuck
Klaus-Dieter Dettmann
Detlef Schulz

VII

Table of Contents
Formula symbol

XVIII

1 Overview of the historical development of the electrical


power supply
2 basics of electrical energy generation
2.1 Electricity generation with fossil fuel power plants. . . . . . . . . . . . .
2.1.1 Coal-fired block power plants. . . . . . . . . . . . . . . . . . . .
2.1.1.1 Steam power plant process in coal-fired block power plants. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1.2 Construction of coal-fired block power plants. . . . . . . . . .
2.1.1.3 Heat consumption curve of condensing power plants
2.1.2 Natural gas-fired power plants. . . . . . . . . . . . . . . . . . . . . .
2.1.2.1 Gas turbine power plants. . . . . . . . . . . . . . . . . . .
2.1.2.2 Gas and steam power plants. . . . . . . . . . . . . . . . .
2.1.2.3 Combined heat and power plants. . . . . . . . . . . . . . . . . . . . .
2.1.2.4 Fuel cells. . . . . . . . . . . . . . . . . . . . . . .
2.1.3 Natural gas / coal-fired systems. . . . . . . . . . . . . . . . . . .
2.2 Electricity generation with hydropower plants. . . . . . . . . . . . . . . . . . .
2.2.1 Types of water turbines. . . . . . . . . . . . . . . . . . . . .
2.2.2 Types of hydropower plants. . . . . . . . . . . . . . . . . . .
2.3 Electricity generation with nuclear power plants. . . . . . . . . . . . . . . . . . . .
2.4 Electricity generation from renewable energy sources. . . . . . . . . . . . . .
2.4.1 Wind turbines. . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1.1 Basics of wind power utilization. . . . . . . . . . .
2.4.1.2 Construction and size development. . . .
2.4.1.3 Characteristic of the energy delivery. . . . . . . . . . . .
2.4.1.4 Speed ​​control and power limitation. . . . . . . .
2.4.1.5 Power curves of wind turbines. . . . . . . . . . . . . . . . .
2.4.1.6 Oshore wind turbines. . . . . . . . . . . . . . . .
2.4.2 Solar thermal power plants. . . . . . . . . . . . . . . . . . . . . .
2.4.2.1 Parabolic trough power plant. . . . . . . . . . . . . . . . . . .
2.4.2.2 Tower power plant. . . . . . . . . . . . . . . . . . . . . . . .
2.4.2.3 Dish-Stirling system. . . . . . . . . . . . . . . . . . . . .
2.4.2.4 updraft power plant. . . . . . . . . . . . . . . . . . . . . .
2.4.3 Biomass power plants. . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.4 Geothermal power plants. . . . . . . . . . . . . . . . . . . . . . .
2.4.5 Tidal power plants. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.6 Wave power plants. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.7 Stream power plants. . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.8 Photovoltaic systems. . . . . . . . . . . . . . . . . . . . . . . .
2.4.8.1 Structure and operating behavior. . . . . . . . . . . . . . .
2.4.8.2 Inverter concepts. . . . . . . . . . . . . . . . . . .
2.4.8.3 Plant concepts. . . . . . . . . . . . . . . . . . . . . . .

1
5
5
5
6
10
16
17
17
18
19
20
21
22
23
23
24
27
28
28
29
32
32
37
38
40
40
41
42
42
43
43
45
45
46
47
47
50
51

VIII

Table of Contents
2.4.9

2.5

2.6

2.7

Storage technologies in energy supply. . .


2.4.9.1 Pumped storage plants. . . . . . . . . . . . .
2.4.9.2 Compressed air reservoir. . . . . . . . . . . . . .
2.4.9.3 Inertia mass storage (flywheel). . .
2.4.9.4 Heat storage. . . . . . . . . . . . . . . .
2.4.9.5 Battery storage. . . . . . . . . . . . . . .
2.4.9.6 Hydrogen storage tank. . . . . . . . . . . . .
2.4.9.7 Capacitor storage. . . . . . . . . . . . .
2.4.9.8 Superconducting magnetic storage. . . . . . .
2.4.10 Conclusions. . . . . . . . . . . . . . . . . . .
Power plant regulation. . . . . . . . . . . . . . . . . . . . . . .
2.5.1 Control of thermal power plants. . . . . . . . . . .
2.5.1.1 Control of a power plant in isolated operation
2.5.1.2 Regulation in the island and interconnected network. . . .
2.5.2 Regulation of hydropower and nuclear power plants. . . . .
Power plant use. . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Course of the network load. . . . . . . . . . . . . . . . . .
2.6.2 Coverage of the network load. . . . . . . . . . . . . . . . .
Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3 Structure of energy supply networks


3.1 transmission systems. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 Single-phase systems. . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 Three-phase systems. . . . . . . . . . . . . . . . . . . . . . . .
3.1.3 HG systems. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Important structures of three-phase networks. . . . . . . . . . . . . . . .
3.2.1 Low voltage networks. . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Medium voltage networks. . . . . . . . . . . . . . . . . . . . . . .
3.2.3 High and extra-high voltage networks. . . . . . . . . . . . . . . . .
3.3 Network structures of wind farms. . . . . . . . . . . . . . . . . . . . . .
3.4 Structure and function of on-board networks. . . . . . . . . . . . . . . . . .
3.4.1 Vehicle electrical systems. . . . . . . . . . . . . . . . . .
3.4.1.1 Design and function of claw pole generators. .
3.4.1.2 Voltage regulation and rectification of the generated
Three-phase current. . . . . . . . . . . . . . . . . . . . . . . .
3.4.1.3 Network design for motor vehicles. . . . . . . . . .
3.4.2 Aircraft electrical systems. . . . . . . . . . . . . . . . . . . . .
3.4.2.1 Electricity generation in airplanes. . . . . . . . . . . .
3.4.2.2 Network design for aircraft. . . . . . . . . . . . .
3.4.3 On-board network of rails. . . . . . . . . . . . . . . . . . . . . . .
3.4.3.1 Electricity generation by rail. . . . . . . . . . . . . .
3.4.3.2 Network design for rails. . . . . . . . . . . . . . .
3.4.4 Other on-board networks. . . . . . . . . . . . . . . . . . . . . . . . .
3.5 tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

52
52
53
53
54
54
55
56
56
56
58
58
58
63
67
67
68
68
69

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

72
73
73
73
76
77
78
80
82
85
86
86
87

.
.
.
.
.
.
.
.
.
.

. 89
. 90
. 91
. 91
. 92
. 94
. 94
. 97
. 99
. 100

Table of Contents
4 Structure and equivalent circuit diagrams of the network elements
4.1 Calculation of networks with inductive couplings. . . . . . . . . .
4.1.1 Analytical description of inductive couplings. . . . . . . . . .
4.1.2 Stationary description of networks with inductive couplings.
4.1.2.1 Illustration of the manual calculation method
on an example. . . . . . . . . . . . . . . . . . . . . .
4.1.2.2 Admittance form of multi-port networks. . . . . . . . . .
4.1.2.3 Impedance form of multi-port networks. . . . . . . . . .
4.1.3 Compensation processes in networks. . . . . . . . . . . . . . . . . . . . .
4.1.3.1 Application of the Laplace transform. . . . . . . . . .
4.1.3.2 Explanations on natural frequency spectra. . . . . . . . .
4.1.4 Non-linear inductances. . . . . . . . . . . . . . . . . . . . . .
4.2 Power transformers. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Single-phase two-winding transformers. . . . . . . . . . . . . .
4.2.1.1 Structure, natural frequency spectra and transient behavior of single-phase two-winding transformers. . . .
4.2.1.2 Low-frequency equivalent circuit diagram of a single-phase two-winding transformer. . . . . . . . . . . . . . . . . . .
4.2.1.3 Operating behavior of two-winding transformers im
single-phase network association. . . . . . . . . . . . . . . . . .
4.2.2 Single-phase three-winding transformers. . . . . . . . . . . . . .
4.2.3 Three-phase power transformers. . . . . . . . . . . . . . . .
4.2.3.1 Structure of a three-phase transformer with two windings. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3.2 Circuits. . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3.3 ratio for symmetrical operation. . . . . . . . .
4.2.3.4 Equivalent circuit diagram for symmetrical operation. . . . .
4.2.3.5 Operating behavior of three-phase two-winding transformers in the network. . . . . . . . . . . . . . . . .
4.2.4 Auto transformers. . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4.1 Structure and use of autotransformers. . . . . .
4.2.4.2 Equivalent circuit diagram of an autotransformer. . . . . . . . .
4.2.5 Transformers with adjustable ratio. . . . . . . . . . .
4.2.5.1 Explanation of the direct voltage setting. . . . . .
4.2.5.2 Explanation of the indirect voltage setting. . . . .
4.2.5.3 Power ratios for transformers with adjustable
translations. . . . . . . . . . . . . . . . . . . . . . . .
4.3 transducers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Voltage converter. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1.1 Inductive voltage converters. . . . . . . . . . . . . . . .
4.3.1.2 Capacitive voltage converters. . . . . . . . . . . . . . .
4.3.2 Current transformers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Synchronous machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Basic structure of synchronous machines. . . . . . . . . .
4.4.2 Model equations of a synchronous machine. . . . . . . . . . . . .
4.4.2.1 Qualitative field conditions in a full pole machine. .
4.4.2.2 Formulation of the model equations. . . . . . . . . . . .

IX
102
102
102
106
107
108
110
112
112
114
116
119
119
120
129
134
136
140
140
141
143
146
153
155
155
156
158
159
161
163
166
167
167
170
171
174
174
176
177
179

Table of Contents
4.4.3

4.5

4.6

4.7

4.8

Operating behavior of synchronous machines. . . . . . . . . . . . . .


4.4.3.1 Equivalent circuit diagram for stationary operation. . . . . . .
4.4.3.2 Operating characteristics of synchronous machines in energy supply networks. . . . . . . . . . . . . . . . . . . . . .
4.4.3.3 Voltage regulation of synchronous machines. . . . . . . .
4.4.4 Behavior of synchronous machines with a three-pole
Short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.4.1 Three-pole terminal short-circuit with a lossless,
idling synchronous machine with permanent magnet rotor.
4.4.4.2 Three-pole terminal short-circuit with a lossless
Full pole machine with direct current excitation. . . . . . . . .
4.4.4.3 Mains short circuit in a lossy full-pole machine with exciter and damper winding. . . . . . . . .
Overhead lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1 Construction of overhead lines. . . . . . . . . . . . . . . . . . . . . . .
4.5.1.1 Masts. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1.2 Conductor ropes. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1.3 Earth ropes. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1.4 Isolators. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.2 Equivalent circuit diagrams of three-phase overhead lines for symmetrical operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.2.1 Inductivity concept for three-wire systems. . . . . . . .
4.5.2.2 Concept of capacity in three-wire systems. . . . . . . . . .
4.5.2.3 Ohmic resistance in three-wire systems. . . . . . .
4.5.2.4 Leakage resistance in three-wire systems. . . . . . .
4.5.3 Operating behavior of symmetrically constructed three-phase overhead lines in symmetrical operation. . . . . . . . . . . . . . . . . .
4.5.3.1 Natural operation. . . . . . . . . . . . . . . . . . . . .
4.5.3.2 Supernatural operation. . . . . . . . . . . . . . . . . . .
4.5.3.3 Sub-natural operation. . . . . . . . . . . . . . . . . .
4.5.3.4 Operating behavior of lossy overhead lines. . . . .
4.5.4 Transient behavior of overhead lines in symmetrical operation
Electric wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1 Structure of cables. . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1.1 Plastic cable. . . . . . . . . . . . . . . . . . . . . . .
4.6.1.2 Earth cable. . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1.3 oil cable. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1.4 Gas cable. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.2 Permissible operating currents of cables. . . . . . . . . . . . . . . . .
4.6.3 Designations of standard cables. . . . . . . . . . . . . . . . . . . .
4.6.4 Cable sets. . . . . . . . . . . . . . . . . . . . . . . .
4.6.5 Equivalent circuit diagram and operating behavior of three-phase cables. . .
Loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Motor loads. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Mixed loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.3 Performance behavior of loads in network operation. . . . . . . . . . . .
Power capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.1 Structure of power capacitors. . . . . . . . . . . . . . . . .

182
182
186
190
192
192
195
202
209
209
209
211
213
214
215
216
222
229
229
231
231
233
233
234
236
239
240
240
243
244
244
245
246
248
250
253
253
254
255
257
257

Table of Contents
4.8.2
4.8.3

4.9
4.10

4.11

4.12

4.13

Basic explanations on reactive power compensation. .


Reactive power compensation in networks with parasitic harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.3.1 Model of a network with converter systems. . . . . . .
4.8.3.2 Evaluation of the equivalent circuit diagram. . . . . . . . . . . . .
4.8.3.3 Network perturbations. . . . . . . . . . . . . . . . . . . . .
4.8.4 Fast reactive power compensation. . . . . . . . . . . . . . . . .
4.8.5 Power flow control with FACTS. . . . . . . . . . . . . . . . .
Choke coils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10.1 Properties of ideal and real switches. . . . . . . . . . . . . . .
4.10.2 Structure and mode of operation of switches. . . . . . . . . . . . . .
4.10.2.1 Circuit breaker. . . . . . . . . . . . . . . . . . . . . . .
4.10.2.2 Disconnector. . . . . . . . . . . . . . . . . . . . . . . . .
4.10.2.3 Load switch. . . . . . . . . . . . . . . . . . . . . . . . .
Switchgear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11.1 Switchgear circuits. . . . . . . . . . . . . . . . . . . .
4.11.2 Construction of switchgear. . . . . . . . . . . . . . . . . . . . . .
4.11.2.1 Conventional outdoor switchgear. . . . . . . . . . . .
4.11.2.2 Gas-insulated metal-enclosed switchgear. . . . . . . .
4.11.2.3 Conventional cell construction. . . . . . . . . . . . . . .
4.11.3 Consideration of switchgear in equivalent circuit diagrams. . . . .
4.11.4 Control technology in switchgear. . . . . . . . . . . . . . . . . . . . . .
4.11.4.1 Tasks of the management levels. . . . . . . . . . . . . . . . . .
4.11.4.2 Communication between the management levels. . . . . . . . . . . . . .
4.11.4.3 Communication via ripple control. . . . . . . . . . .
Insulation coordination and protection of equipment from impermissible
overvoltages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12.1 Stresses on equipment due to various types of overvoltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12.1.1 Temporary overvoltage. . . . . . . . . . . . . . . .
4.12.1.2 Transient overvoltages. . . . . . . . . . . . . . . . .
4.12.2 Determination of the insulating capacity of equipment with the help of
standardized rated voltages. . . . . . . . . . . . . . . . . .
4.12.2.1 Breakdown characteristics of tip-plate arrangements.
4.12.2.2 Identification of the breakdown characteristics by representative overvoltages. . . . . . . . . . . . . . . . .
4.12.2.3 Determination of isolation levels. . . . . . . . . . . . . .
4.12.2.4 Insulation capacity of further arrangements. . . . . . . . . . .
4.12.3 Surge arresters and lightning protection devices. . . . . . . .
4.12.3.1 Valve arrester. . . . . . . . . . . . . . . . . . . . . . . . .
4.12.3.2 Metal oxide arrester. . . . . . . . . . . . . . . . . . . . . .
4.12.3.3 Lightning protection devices. . . . . . . . . . . . . . . . . .
Protection of equipment from impermissible current loads. . . .
4.13.1 Fuses and Is Limiter. . . . . . . . . . . . . . . . . . . . .
4.13.1.1 HV HRC fuses. . . . . . . . . . . . . . . . . . . . . . .
4.13.1.2 NH fuses. . . . . . . . . . . . . . . . . . . . . . .
4.13.1.3 Is limiter. . . . . . . . . . . . . . . . . . . . . . . . .

XI
258
260
261
262
263
265
267
270
273
273
274
275
278
280
281
281
287
287
291
297
299
300
300
302
303
304
304
304
305
311
311
312
314
315
317
317
320
323
324
324
324
327
329

XII

Table of Contents

4.13.2 Protection systems for equipment. . . . . . . . . . . . . . . . . . .


4.13.2.1 Principle of comparison. . . . . . . . . . . . . . . . . . . . . . .
4.13.2.2 Overcurrent principle. . . . . . . . . . . . . . . . . . . . . .
4.13.2.3 Distance principle. . . . . . . . . . . . . . . . . . . . . . . .
4.13.2.4 Further grid protection principles. . . . . . . . . . . . . . .
4.13.2.5 Technical implementation of the protection principles. . . . . . . .
4.14 Grid connection of wind turbines. . . . . . . . . . . . . . . . . . .
4.14.1 Stationary equivalent circuit diagram of a grid connection of wind turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14.2 Generators and power electronic devices for the grid connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14.2.1 Network coupling of generators. . . . . . . . . . . . . . .
4.14.2.2 Operating behavior of double-fed asynchronous generators in wind turbines. . . . . . . . . . . . . . . . . . . . . .
4.14.2.3 Power electronic equipment in wind turbines. . . . . .
4.14.2.4 Functionality of self-commutated inverters. . . . . . .
4.14.2.5 Typical applications of self-commutated inverters in wind turbines. . . . . . . . . . . . . . . . . . . . . . . . .
4.14.3 Grid connection of wind farms. . . . . . . . . . . . . . . . . . . .
4.14.3.1 Voltage levels in wind farms. . . . . . . . . . . . . .
4.14.3.2 Transient simulation of wind farms. . . . . . . . . . .
4.15 Replacement circuits of photovoltaic systems. . . . . . . . . . . . . . . . .
4.15.1 Single-diode model. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.15.2 Modeling for solar modules. . . . . . . . . . . . . . . . . . . .
4.16 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

330
330
331
333
335
335
336

5 Design of networks in normal operation


5.1 Criteria for permissible permanent thermal load and voltage maintenance
5.2 Unilaterally fed line without branches. . . . . . . . . . . . . . .
5.3 Unilaterally fed line with branches. . . . . . . . . . . . . . .
5.4 Double-fed line. . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Mesh network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 Replication of sub-networks. . . . . . . . . . . . . . . . . . . . . . . . . .
5.7 Load calculation in energy supply networks. . . . . . . . . . . . . .
5.7.1 Load calculation using the current sums. . . . . . . . . . .
5.7.1.1 Networks with current injections. . . . . . . . . . . . . . .
5.7.1.2 Networks with an impressed voltage source and
Constant current loads. . . . . . . . . . . . . . .
5.7.1.3 Networks with an impressed voltage source and
Loads with constant active and reactive power. . . . . .
5.7.1.4 Networks with several impressed voltage sources. . .
5.7.1.5 Networks with power plant feed-in. . . . . . . . . . . .
5.7.2 Load calculation using the power sums. . . . . . . . .
5.7.3 Load calculation in networks with several voltage levels. .
5.7.4 Calculation of eigenvalues ​​from the stationary nodal admittance matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

365
365
366
371
372
376
377
379
380
380

336
338
338
340
344
347
349
351
351
352
353
353
355
356

382
382
383
384
384
388
389
390

Table of Contents

XIII

6 Three-pole short circuit
393
6.1 Three-pole short circuit remote from the generator. . . . . . . . . . . . . . . . . . . 394
6.1.1 Calculation of the short-circuit current curve in unbranched networks
with a power supply. . . . . . . . . . . . . . . . . . . . . . . 394
6.1.1.1 Calculation of the steady-state short-circuit alternating current. . 394
6.1.1.2 Calculation of the transient process. . . . . . . . . . . . 396
6.1.2 Calculation of the short-circuit currents in branched network systems with
multiple grid feeds. . . . . . . . . . . . . . . . . . . . . . 399
6.1.2.1 Modeling and solution methodology for branched network systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
6.1.2.2 Calculation of the stationary short-circuit currents with the
Procedure of the equivalent voltage source. . . . . . . . . . . 401
6.1.2.3 Calculation of the transient process in the process
with the equivalent voltage source. . . . . . . . . . . . . . . 403
6.1.2.4 Illustration of the short-circuit current calculation at
branched networks using an example. . . . . . . . . . . 408
6.1.2.5 Influence of the network capacities and mixed loads on the short-circuit currents. . . . . . . . . . . . . . . . . . . . . . . . . 412
6.2 Three-pole short circuit close to the generator. . . . . . . . . . . . . . . . . . . 414
6.2.1 Model of a lossless, multiply fed network with a
short circuit close to the generator. . . . . . . . . . . . . . . . . . . . . . 414
6.2.2 Calculation of the initial short-circuit alternating current for short-circuits close to the generator. . . . . . . . . . . . . . . . . . . . . . . . . . 418
6.2.3 Calculation of the short-circuit current for faults close to the generator. 420
6.2.4 Calculation of the short-circuit breaking current. . . . . . . . . . . . . 424
6.2.5 Consideration of network capacities, mixed loads, motor-driven
Consumers and wind turbines in the event of short circuits close to the generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
6.3 Short circuit in on-board networks. . . . . . . . . . . . . . . . . . . . . . . . . . . 428
6.3.1 Motor vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
6.3.2 Airplanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
6.3.3 Schie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
6.4 Tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
7 Design of networks against short-circuit effects and design
of switches
7.1 Arc short circuits in systems. . . . . . . . . . . . . . . . . . . . .
7.2 Mechanical short-circuit strength. . . . . . . . . . . . . . . . . . . . .
7.2.1 Design of linear, rigid ladders. . . . . . . .
7.2.1.1 Calculation of the current forces. . . . . . . . . . . . . . .
7.2.1.2 Dimensioning of the conductor rails. . . . . . . . . . .
7.2.1.3 Current forces in curved and encapsulated conductor rails. . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.2 Design of conductor rails with large cross-sectional dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.3 Design of supports. . . . . . . . . . . . . . . . . . . . . . .
7.2.4 Design of conductors and cables. . . . . . . . . . . . . .

.
.
.
.
.

436
436
439
440
440
442

. 444
. 445
. 448
. 449

XIV
7.3

7.4
7.5

7.6

7.7

Table of Contents
Thermal short-circuit strength. . . . . . . . . . . . . . . . . . . . . . .
7.3.1 Calculation of the thermal stress. . . . . . . . . . . . . . . .
7.3.2 Determination of the permissible short-term current. . . . . . . . . . . . . .
Measures to influence the short-circuit power. . . . . . . . . . .
Effects of short circuits on the transient generator speed behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5.1 Important network parameters for ensuring the transient
Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5.1.1 Modeling a generator network connection. . . . . . .
7.5.1.2 Discussion of the model equation. . . . . . . . . . . . . . .
7.5.1.3 Interpretation of various error situations with the
Area criterion. . . . . . . . . . . . . . . . . . . . . . .
7.5.1.4 Errors in a subordinate voltage level. . . . . . .
7.5.1.5 Error in the extra-high voltage network. . . . . . . . . . . . . .
7.5.1.6 Fault with switch-off. . . . . . . . . . . . . . . . . .
7.5.2 Speed ​​behavior of the generators in a short-circuit-prone
Network with multiple generator feeds. . . . . . . . . . . . .
Design of switches. . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6.1 Transient voltages after a switch-terminal short-circuit
in single-phase networks. . . . . . . . . . . . . . . . . . . . . . . . .
7.6.2 Evaluation of the transient stresses. . . . . . . . . . . . . . . .
7.6.3 Distance short-circuit in single-phase networks. . . . . . . . . . . . .
7.6.4 Design of circuit breakers in three-phase networks. . . . . . .
7.6.5 Switching processes without short circuit. . . . . . . . . . . . . . . . . . .
Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 basics of operational management and planning of electrical


Energy systems
8.1 Management of network systems. . . . . . . . . . . . . . . . . . . . . .
8.1.1 Organization of the electricity market. . . . . . . . . . . . . . . . . . .
8.1.1.1 Organization of the electricity market before deregulation.
8.1.1.2 Organization of the electricity market after deregulation
8.1.2 Management of transmission networks. . . . . . . . . . . . .
8.1.2.1 Database and range of tasks of the network computer. .
8.1.2.2 Oline network management with the network computer. . . . . . . .
8.1.2.3 Online network management bill. . . . . . . . . . . . . . .
8.1.2.4 Schedule management. . . . . . . . . . . . . . . . . . .
8.1.3 Management of distribution networks. . . . . . . . . . . . . . .
8.1.3.1 Database and range of tasks of the control line.
8.1.3.2 Management of distribution networks. . . . . . . . . . . . . .
8.2 Considerations for planning networks. . . . . . . . . . . . . . . . . .
8.2.1 Planning of low-voltage networks. . . . . . . . . . . . . . . .
8.2.2 Expansion planning for medium-voltage networks. . . . . . . . . . . .
8.2.3 Expansion planning of high and extra-high voltage networks. . . . .
8.3 Grid integration and system services for wind turbines. .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

449
449
452
454
457
458
458
463
463
464
465
467
467
470
472
476
478
481
482
484

486
486
486
486
487
492
492
494
498
499
500
500
501
502
502
504
505
508

Table of Contents
8.4

8.5

XV

Grid-side behavior of generating units and voltage quality


8.4.1 overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.2 Directives according to VDEW and FGW. . . . . . . . . . . . . . . . .
8.4.3 Voltage quality according to EN 50160. . . . . . . . . . . . . . . . .
8.4.4 Transmission system operator guidelines. . . . . . . . . . . . .
8.4.4.1 E.ON guidelines. . . . . . . . . . . . . . . . . . . . . .
8.4.4.2 VDN guideline for EEG generation plants. . . . . .
Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.

9 Calculation of asymmetrically fed three-phase networks with


symmetrical structure
9.1 Method of symmetrical components. . . . . . . . . . . . . . . . .
9.2 Application of the symmetrical components to asymmetrically operated three-phase networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3 Impedances of important equipment in positive and negative systems of the symmetrical components . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4 Impedances of important equipment in the zero system of the symmetrical
Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.1 Zero impedance of an overhead line without an earth wire. . . . . . . . . . . . .
9.4.1.1 Ohmic resistance of a zero-voltage fed overhead line. . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.1.2 Inductance of a zero-voltage fed overhead line. .
9.4.1.3 Capacities of a zero-voltage fed overhead line. .
9.4.2 Zero impedance of an overhead line with an earth wire. . . . . . . . . . . . .
9.4.3 Zero impedance of a double line. . . . . . . . . . . . . . . . . .
9.4.4 Zero impedance of cables. . . . . . . . . . . . . . . . . . . . . . .
9.4.5 Zero impedance of transformers. . . . . . . . . . . . . . . . .
9.4.5.1 Three-limb transformers. . . . . . . . . . . . . . . .
9.4.5.2 Five-leg transformers. . . . . . . . . . . . . . . .
9.4.6 Zero impedance of synchronous machines. . . . . . . . . . . . . . . .
9.5 Illustration of the calculation method using an example. . . . .
9.6 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Calculation of three-phase networks with symmetrical equipment and punctual asymmetrical errors
10.1 Description of huger asymmetrical faults. . . . . . . . . . . . .
10.2 Explanation of the calculation procedure. . . . . . . . . . . . . . . . .
10.3 Application of the calculation method to different types of errors.
10.3.1 Earth fault with contact resistance. . . . . . . . . . . . . . .
10.3.2 Two-pole short-circuit with and without earth contact. . . . . .
10.3.2.1 Two-pole short circuit without transition resistors.
10.3.2.2 Two-pole short circuit with transition resistors.
10.3.3 Single-pole open circuit. . . . . . . . . . . . . . . . . .
10.3.4 Asymmetrical multiple faults. . . . . . . . . . . . . . . . .
10.4 Compensation processes for asymmetrical errors. . . . . . . . . . . .
10.4.1 Transient component equivalent circuit diagrams for asymmetrical ones
faults remote from the generator. . . . . . . . . . . . . . . . . . . . . . . .
10.4.2 Transient component equivalent circuit diagrams for asymmetrical ones
generator-related errors. . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

509
509
509
510
512
512
513
513

517
517
520
525
527
528
529
531
533
533
535
537
539
539
546
547
547
552

553
553
554
560
560
561
561
564
566
569
572

. . 572
. . 576

XVI

Table of Contents

10.4.3 Numerical evaluation of the transient component equivalent circuit diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577


10.4.4 Approximation method for determining the short-circuit current
with one- and two-pole short circuits. . . . . . . . . . . . . . . . 580
10.5 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
11 Neutral point treatment in energy supply networks
11.1 Influence of neutral point treatment on stationary network behavior
single-pole earth faults. . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1.1 Networks with isolated star points. . . . . . . . . . . . . . . . . .
11.1.2 Networks with earth fault compensation. . . . . . . . . . . . . . . . . .
11.1.3 Networks with low-resistance star point earthing. . . . . . . . . . . . .
11.1.4 Illustration of the voltage relationships by means of vector diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Influence of the neutral point treatment on the transient network behavior for
single-pole earth faults. . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.1 Transient overvoltages due to permanent earth faults. . . . . . . .
11.2.2 Earth faults with automatically extinguishing arcs. . . . . . . .
11.3 Influence of the neutral point treatment on ferroresonance phenomena. . .
11.3.1 Explanation of the ferroresonance effect. . . . . . . . . . . . . . . . .
11.3.2 System congurations at risk of ferroresonance. . . . . . . . . .
11.4 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

583

12 Important measures to protect people and animals


12.1 Protection against accidental contact in networks with rated voltages greater than 1 kV. . . . .
12.1.1 Permissible body currents and contact voltages. . . . . . . .